

QP Code: NP-19691

20

(3 Hours) [Total Marks: 80

N.B.: (1) Question No. 1 is Compulsory.

- (2) Solve any three questions from remaining five questions.
- (3) Figures to the right indicate full marks.
- (4) Assume suitable data if necessary and mention the same in answer sheet.
- 1. Solve any five

(a) Compare ideal and practical Op Amp.

- (b) Consider a BJT has parameters $f_T = 500$ MHz at Ic = 1 mA, $\beta = 100$ and $C\mu = 0.3$ pF. Calculate bandwidth f_B and capacitance $C\pi$ of a BJT.
- (c) What is cross-over disortion in power Amplifier. How it is overcome?
- (d) Which type of biasing technique is used to bias Integrated Circuit and why?
- (e) Find output voltage of differential amplifier if its differential gain Ad = 100, common mode gain Ac = 0.1 and input voltage are $V_1 = 2 + 0.55$ sinot and $V_2 = 0.5 0.005$ sinot.
- (f) Explain line regulation and load regulation of voltage regulator. Draw load and line regulation characteristics of ideal and practical voltage regulator.
- 2. (a) For the circuit shown in Fig 2a, the parameters are $R_s = 0.1 \text{ k}\Omega$, $R_1 = 20 \text{k}\Omega$, $R_2 = 2.2 \text{ k}\Omega$, $R_E = 0.1 \text{ K}\Omega$, and $R_E = 0.1 \text{ K}\Omega$.
 - Derive expression for lower cut-off frequency (or time constant) due to coupling capacitor Cc,
 - (ii) Determine lower cut off frequency and midband voltage gain.

Con. 10712-14.

[TURN OVER

QP Code: NP-19691

- 2. (b) For the circuit shown Fig.2b, the transistor parameters are: $Kn = 1mA/V^2$, $V_{TN} = 0.8V$, 10 $\lambda = 0$, Cgs = 2pF, and cgd = 0.2pF. Determine
 - (i) Miller capacitance
 - (ii) The upper 3dB (high cut-off) frequency
 - (iii) The mid band voltage gain

3. (a) For the circuit shown in Fig.3a, find overall midband voltage gain and capacitors Cc_1 and Cc_2 such that the 3dB frequencies associated with each stage are equal. Assume BJT have parameters: $V_{BE(ON)} = 0.7 \text{ V}$, $\beta = 200$, and $VA = \infty$.

Fig.3a

Con. 10712-14.

[TURN OVER

QP Code: NP-19691

3. (b) For the differential amplifier shown in Fig 3b, derive expression for differential voltage gain, common-mode voltage gain and CMRR.

- 4. (a) The transistor parameters for the circuit shown in Fig 4a are $\beta = 100$, $V_{BE(ON)} = 0.7V$, 10 and $VA = \infty$.
 - (i) Determine R_E such that $I_E = 150 \mu A$.
 - (ii) Find Ad, Acm and CMRR for one sided output at vo2.
 - (iii) Determine the differential and common-mode input resistances.

Con. 10712-14.