PVPP College of Engineering, Mumbai Department of General Engineering
 End-Semester Test SH-2015

Sem-1 All Branches Sub: BEEE Max. Marks: 20
Time: 9-30AM to 11AM Date: Oct. 29, 2015

Note: (1) Q. 1 is Compulsory, (2) Attempt any three questions from Q.2 to Q.5.
(3) Each question carry 5 Marks. (4) Assume suitable data wherever required with proper justification

Q1 Prove that the RMS value of a sinusoidal AC voltage source is 70.7% of its peak value. Find the RMS value of a voltage signal whose instantaneous equation is given by:

$$
v(t)=50+(100 \cdot \sin (314 t-\pi / 6))
$$

OR
Q1 A coil of 0.6 lagging power factor is connected in series with a $100 \mu \mathrm{~F}$ Capacitor and the combined circuit is connected across a 50 Hz frequency supply. The potential difference across the coil is equal to the potential difference across the capacitor. Find the Resistance and Inductance of the coil.

Q2 Explain with appropriate graph the vaiation of inductive reactance, capacitive reactance, impedance and power factor and circuit-current with reference to variation in frequency in a series R-L-C Circuit. Derive an expression for Bandwidth expressed in terms of Quality factor and Resonant frequency.

OR

Q2 A coil has a load impedance of $Z_{c}=100 \Omega$ with 0.866 lagging p.f. is connected across a a single phase $400 \mathrm{~V}, 50 \mathrm{~Hz}$ Mains. Calculate value of a capacitor which would be connected across the coil so that the combined circuit current will be in phase with the supply voltage.

Q3 Two wattmeters are connected to measure power in three phase circuit. One of the wattmetrs reads 7 kW when the load power factor is unity. If the load power factor is changed to 0.707 lagging without changing the total input power, calculate the readings of both the wattmeters
Q4 Prove the condition for maximum efficiency of a single phase transformer. Explain the reason why iron loss is called as constant loss and copper loss as variable loss in a transformer.

Q5 (a) Explain in brief the volt-ampere characteristics of p-n junction diode
Q5 (b) Prove that the instantaneous sum of three phase voltages for a balanced three phase system is zero.

PVPP College of Inginceing
Departmeort of Gencral Engireci-:
Sub:- BEFE, First Yean Eng neews, Paper Solution for $\frac{\text { Erd-Sem Exam }}{\text { SH-2015 }}$
Q. 1
$V_{r m s}=\frac{V_{m}}{\sqrt{2}}$ for a sinusoidal warefoun

$$
\begin{aligned}
V(t) & =50+100 \sin (314 t-\pi / 6) \\
\text { In general } & =V_{d c}+V_{m} \sin \left(\omega_{t} \pm \phi\right) \\
\therefore V_{\text {sms }} & =\sqrt{\left(V_{d c}\right)^{2}+\left(\frac{V_{m}}{V^{2}}\right)^{2}}=\sqrt{V_{\text {ims, }}^{2}+V_{\text {ims }}^{2}} \\
& =\sqrt{(50)^{2}+\left(\frac{100}{\sqrt{2}}\right)^{2}}=86.6 \text { Volts }
\end{aligned}
$$

Q. 1

$V_{\text {coil }}=V_{c}$ To find R and L
-OR -
$Q \cdot 1$ - Continued

$$
\begin{aligned}
& Z_{C \text { Col }}=R+j x_{L}=\text { Impedmana of the } \\
& Z_{T}=R+j\left(X_{L}-x_{C}\right)=\text { Total Impedan }
\end{aligned}
$$

Since the current flawing through the coil and capacitor is the Sans

$$
\begin{align*}
V_{\text {cost }} & =V_{\text {Cap }} \\
\therefore I Z_{\text {cost }} & =I X_{C} \\
\therefore \sqrt{R^{2}+X_{L}^{2}} & =X_{C}=\frac{1}{\omega C}=31.84 \Omega \tag{0}\\
R^{2}+X_{L}^{2} & =1013.78
\end{align*}
$$

Let $X_{L}-x_{C}=x$

Since the $\cos l$ has 0.6 lagging $p f$.

$$
\begin{aligned}
\cos \varphi_{\text {Coil }} & =\frac{R}{Z_{C O L}}=0.6 \\
\therefore & R \\
\therefore R^{2} & =0.6 \sqrt{R^{2}+X_{L}^{2}} \\
\therefore \quad & =0.36\left(R^{2}+X_{L}^{2}\right)=0.36 R^{2}+0.36 x_{L}^{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\therefore & R^{2}(1-0.36)=0.36 X_{L}^{2} \\
\therefore & R^{2}=0.5625 X_{L}^{2} \tag{2}
\end{array}
$$

\therefore Solving eran (1) \& (2)

$$
\begin{aligned}
& x_{L}^{2}=648.8 \quad \therefore \quad X_{L}=25.47 \Omega \\
& L=0.08 H
\end{aligned}
$$

From $\mathrm{esun}^{n}(R=19.10 \Omega$
R. 2

Different graphos w.r.t.R-L-C
series circuit
If $Q=$ Quality factor
$f_{0}=$ Resonant Frez $\Delta f=$ Bandwidts.
$\therefore Q=f_{0} \Delta f$
(OR)
Q. 2

$$
z_{\text {coil }}=100 \Omega \quad \cos \phi_{c}=0.866 \text { lagu. }
$$

$$
\phi=30^{\circ} \text {. }
$$

$$
\begin{aligned}
I_{\text {coil }} & =\frac{V_{s} \leqslant 0^{\circ}}{z_{\text {coil }} \angle 38} \\
& =\frac{400}{100} \angle-30 \\
I_{\text {coot }} & =4 \angle-38^{\circ} A
\end{aligned}
$$

$$
\begin{aligned}
\cos \phi & =0.866 \text { laqry. } \\
\phi & =30^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& I_{\text {cop }}=0.5 \times 4 \\
& I_{\text {can }}=2 \text { Aup }
\end{aligned}
$$

$$
F_{\text {cap }}=2 \text { sup. }
$$

$$
I_{\text {cap }}=V / x_{c}=\frac{900}{x_{c}}
$$

$$
\therefore x_{c}=\frac{400}{2}
$$

$$
x_{c}=200 \Omega
$$

$$
\begin{aligned}
\therefore C & =\frac{1}{x_{e} \omega}=\frac{1}{200 \times 314.159}=15.91 \times 10^{-6} \\
C & =15.91 \mu \mathrm{~F}
\end{aligned}
$$

人 3
Let W_{1} and W_{2} are two wattmeter leading when load P.f. is worth

$$
\begin{aligned}
& \quad W_{1}=w_{2} \quad \cos \phi=1 \\
& \\
& \\
& \therefore=w_{1}+w_{2}=v \pm \cos \phi \\
& \therefore \text { Total active } \quad a=\sqrt{3}\left(w_{1}-w_{2}\right)=0
\end{aligned}
$$

Power $P=7 k w+7 k w w_{1}=w_{2}=7 \mathrm{kw}$.
New situation $=14 \mathrm{kw}$:
\Rightarrow If the lowe p.f. is changed to 0.707 lagging without changry the
total input active power.

$$
\begin{align*}
& \therefore P=14 \mathrm{kw}= \\
& \text { if } P f=0.707 \text { lagan } \\
& \phi=\cos ^{-1}(0.707)=45^{\circ} \\
& \therefore P=Q \text { if } \phi=45^{\circ} \\
& \therefore \quad W_{1}+w_{2}=14 \mathrm{kw} \tag{I}\\
& \sqrt{3}\left(w_{1}-w_{2}\right)=14 \mathrm{kw} . \tag{2}
\end{align*}
$$

Parer triangle

Fran (1) \& (2)

$$
\begin{aligned}
& w_{1}=11 \mathrm{kw} \\
& w_{2}=3 \mathrm{kw}
\end{aligned} \quad \begin{aligned}
& w_{1}-w_{2}=8.08 \\
& 2 w_{1}=22.08
\end{aligned}
$$

Q. $4 \quad \eta_{t_{r}}=\frac{O / p}{O / p+i \text { icon } \operatorname{los}+\mathrm{Cu}}$ logs

Let $x=$ loading condition (pu)

$$
=\frac{K V A_{p r a s e n}}{K V A_{F L}}=\frac{K V A_{x}}{K V A_{F L}}
$$

Let $\cos \phi=1$ load $p f$.

$$
P_{i}=\text { gran loss }
$$

$P_{\text {au }}(x)=$ Cu. loss at x loading State
$\left.P_{u(f R}\right)=\mathrm{Cu}$. loss at fulloas.

$$
\therefore \eta=\frac{x K V A \cos \phi}{x K V A \cos \phi+P_{i}+x^{2} P \operatorname{Pa}\left(f_{1}\right)}=\frac{u}{V}
$$

Differentiate w.s.t. x

$$
\begin{aligned}
& \begin{array}{l}
\text { Differentiate w.r.t. } x \\
\begin{aligned}
\frac{d \eta}{d x} & =0 \text { for xhax } \eta
\end{aligned}
\end{array} \\
& \therefore V d u-u d V=(K V A \cos \phi)\left[x K V A \cos \phi+P_{i}+x^{2} \rho c u F L\right] \\
& -(K V A \cos \phi+2 x P \operatorname{cou} L)(x K V A \cos \varphi) \\
& =x[K V A \cos \phi]^{2}+P_{i} K V A \cos \varphi+x^{2} K V A \cos \phi P_{C U} F L \\
& =x(K V A \cos \phi)^{2}+2 x^{2} K V A \cos \phi P \text { curL }
\end{aligned}
$$

contd.....

$$
\begin{aligned}
& \therefore \frac{d \eta_{2}}{d x}=0 \\
& \Rightarrow \quad P_{i} K V A \cos \phi+x^{2} K V A \cos \phi P_{c u F L} \\
& =2 x^{2} K V A \cos \phi P_{c} R_{L} L \\
& \therefore \\
& \therefore \quad x^{2} K V A \cos \phi P_{G H L}=P_{i} K V A \cos \phi \\
& \therefore=\sqrt{P_{i}} \quad P_{i}=x^{2} P_{C U F L}
\end{aligned}
$$

Since $x^{2} P_{C u}(F L)=P_{C u}(x)$

$$
\begin{aligned}
\therefore P_{i}=\text { Iron loss }= & \text { Cu. Loss } \\
& \text { at } x \text { loading } \\
& \text { state. }
\end{aligned}
$$

This is the condition of Max. efficiency es
x at $\eta_{\max }=\sqrt{\frac{P_{i}}{P_{C_{i} L L}}}$

Q5 (b) Prove that the instantaneous Sum of the phase voltages for a balanced three phase system is zero
Let

$$
\begin{aligned}
& e_{a}=V_{m} \cos \omega t \\
& e_{b}=V_{m} \cos \left(\omega t-120^{\circ}\right) \\
& e_{c}=V_{m} \cos \left(\omega t+120^{\circ}\right)
\end{aligned}
$$

be a voltage system for a three phase balanced system.

Representing the above stat of exes in polar form
\notin

$$
\begin{aligned}
& \overrightarrow{E_{a}}=V \angle 0^{\circ} \\
& \overrightarrow{E_{b}}=V \angle-120^{\circ} \\
& \overrightarrow{E_{c}}=V \angle+120^{\circ}
\end{aligned}
$$

$\vec{E}_{a}+\vec{E}_{b}+\vec{E}_{c}=$ Instantan sum/phaser

$$
\begin{aligned}
& E_{a}+E_{b}+E_{c} \\
& =V[1+j 0]+V[-0.5-j 0.866] \\
& +V[-0.5+j 0.866]=0
\end{aligned}
$$

