PVPP College of Engineering, Mumbai Department of General Engineering
 Practice Problems SH-2015

Sem-1 All Branches Sub: BEEE

Q1 A coil of 0.866 lagging power factor is connected in series with a $10 \mu \mathrm{~F}$ Capacitor and the combined circuit is connected across a 200 Hz frequency supply. The potential difference across the coil is equal to the potential difference across the capacitor. Find the Resistance and Inductance of the coil

Q2 Explain with appropriate graph the vaiation of inductive reactance, capacitive reactance, impedance and power factor and circuit-current with reference to variation in frequency in a series R-L-C Circuit. Derive an expression for Bandwidth expressed in terms of Quality factor and Resonant frequency.

Q3 Two wattmeters are connected to measure power in three phase circuit. One of the wattmetrs reads 7 kW when the load power factor is unity. If the load power factor is changed to 0.707 lagging without changing the total input power, calculate the readings of both the wattmeters

Q4 Prove the condition for maximum efficiency of a single phase transformer. Explain the reason why iron loss is called as constant loss and copper loss as variable loss in a transformer.

Q5 (a) Explain in brief the volt-ampere characteristics of p-n junction diode
Q5 (b) Prove that the instantaneous sum of three phase voltages for a balanced three phase system is zero

Q6 Two wattmeters are connected to measure power in three phase circuit. One of the wattmetrs reads 7 kW when the load power factor is unity. If the load power factor is changed to 0.707 lagging without changing the total input power, calculate the readings of both the wattmeters

Q7 A balanced delta connected load impedance with a per phase value: $Z_{p h}=50 \angle 60^{\circ} \Omega$ is connected across a three phase $400 \mathrm{~V}, 50 \mathrm{~Hz}$ Mains. Calculate the active power consumed per phase and the total three phase power. Also calculate reactive VAR drawn from the mains.

Q8 A coil has a load impedance of $Z_{c}=20 \Omega$ with 0.5 lagging p.f. is connected across a a single phase $400 \mathrm{~V}, 50 \mathrm{~Hz}$ Mains. Calculate value of a capacitor which would be connected across the coil so that the combined circuit current will be in phase with the supply voltage.

