Sem III Elen (ver)

ED

QP Code: NP-18616

(3 Hours)

[Total Marks: 80

5

10

- N. B.: (1) Question No. 1 is compulsory and solve any three questions from remaining questions.
 - (2) Assume suitable data if necessary.
 - (3) Draw neat and clean figures.

Given Data -

- (1) $q = 1.6 \times 10^{-19} C$
- (2) $k = 1.38 \times 10^{-23} \text{ J/K}$
- (3) $\text{ni} = 1.5 \times 10^{10} \text{ cm}^{-3}$
- (4) \in si = 11.7 × 8.854 × 10⁻¹⁴
- 1. (a) What is Non-ideal effects in BJT and hence explain Base width modulation in brief.
- 1. (b) Justify how phototransistor is more practical than photo diode.
- 1. (c) Explain in brief TWO Terminal MOS structure.
- 1. (d) Explain construction and characteristics of UJT. 5
- 2. (a) Explain concepts, construction, characteristics and working of Gunn diode. 10
- 2. (b) Explain basic principle of operation of BJT with the help of construction, minority carrier distribution and energy band diagrams.
- (a) Explain structure and operation of MOSFET considering different cases of threshold voltage V_T.
 - (b) An abrupt PN junciton has dopant concentrations of Na = 2 × 10¹⁶ cm⁻³ and Nd = 2 × 10¹⁵ cm⁻³ at T = 300 K Calculate:
 (a) Vbi
 - (b) W at $V_R = 0$ and $V_R = 8V$
 - (c) E maximum at $V_R = 0$ and $V_R = 8V$

QP Code: NP-18616

4.	(a)	What is photovoltaic effect. Explain in detail Solar Cell with working,	
		characteristics and practical applications.	10
		Spranger it of aldered Spr	
4.	(b)	For an n-channel MOS transistor with	10
		$\mu n = 600 \text{ cm}^2/\text{V.S}, \text{Cox} = 7 \times 10^{-8} \text{ F/cm}^2,$	
		$W = 20\mu m$, $L = 2\mu m$ and $VTO = 1.0 V$.	
		Examine the relationship between the Drain current and terminal voltages.	
			٠.,
5.	(a)	Explain construction, working and characteristics of TRIAC & DIAC.	10
5.	(b)	Explain schottky-barrier diode with the help of energy band diagram.	10
		THE ALL THOR IS A 1	10
6.	(a)	What is HBT, Explain construction and energy band diagram of HBT.	10
6.	(a)	Explain difference between N-channel and P-channel JFET, Also explain	
		characteristcs (Drain and Transfer) for N-channel JFET.	10

2

SE(ELEX, ET) Sem III (CBS45)

AM-III.

22.05.14.

OP Code: NP-18646

(3 Hours)

Total Marks : 80

N. B.: (1) Question No. 1 (one) is compulsory.

- (2) Attempt any 3 (three) questions from the remaining questions.
- (3) Assume suitable data, if necessary.

1. (a) Evaluate
$$\int_{0}^{\infty} \frac{(\cos 6t - \cos 4t)}{t} dt$$

5

(b) Obtain complex form of fourier series for $f(x) = e^{ax}$ in (-1, 1)

- (c) Find the work done in moving a particle in a force field given by 5 $\overline{F} = 3xy\hat{i} - 5z\hat{j} + 10x\hat{k}$ along the curve $x = t^2 + 1$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- (d) Find the orthogonal trajectory of the curves $3x^2y + 2x^2 y^3 2y^2 = \alpha$, where 5 a is a constant.
- (a) Evaluate $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} 3y = \sin t$, y(0) = 0, y'(0) = 0, by Laplace transform 6

(b) Show that $J_{\frac{5}{2}} = \sqrt{\frac{2}{\pi x}} \left[\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right]$

- (c) (i) Find the constants a, b, c so that
 - $\overline{F} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+(y+2z)\hat{k}$ is irrotational.
 - (ii) Prove that the angle between two surfaces $x^2 + y^2 + z^2 = 9$ and

$$x^2 + y^2 - z = 3$$
 at the point (2,-1,2) is $\cos^{-1}\left(\frac{8}{3\sqrt{21}}\right)$

(a) Obtain the fourier series of f(x) given by

$$f(x) = \begin{cases} 0 & \pi \le x \le 0 \\ x^2 & 0 \le x \le \pi \end{cases}$$

- (b) Find the analylic function f(z) = u + iv where $u = r^2 \cos 2\theta r \cos \theta + 2$
- 6

(c) Find Laplace transform of (i) te-3t cos2t.cos3t

8

(ii) $\frac{d}{dt} \left[\frac{\sin 3t}{t} \right]$

Con. 11456-14.

[TURN OVER

(a) Evaluate $\int J_3(x)dx$ and Express the result in terms of J_0 and J_1

(b) Find half range sine series for $f(x) = \pi x - x^2 \text{ in } (0, \pi)$

Hence deduce that $\frac{\pi^3}{32} = \frac{1}{12} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots$

(c) Find inverse Laplace transform of

(i) $\frac{1}{s} \tanh^{-1}(s)$ (ii) $\frac{se^{-2s}}{(s^2 + 2s + 2)}$

(a) Under the transformation $w + 2i = z + \frac{1}{z}$, show that the map of the circle |z| =

2 is an ellipse in w-plane. (b) Find half range cosine series of $f(x) = \sin x$ in $0 \le x \le \pi$

Hence deduce that

8

 $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots = \frac{1}{2}$ (c) Verify Green's theorem, for

 $\oint (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where is boundary of the region defined by x=0, y=0, and x+y=1.

6

(a) Using convolution theorem; evaluate

$$L^{-1} \left\{ \frac{1}{(s-1)(s^2+4)} \right\}$$

(b) Find the bilinear transformation which maps the points z = 1, i, -1 onto w = 0, 1, ∞

(c) By using the appropriate theorem, Evaluate the following:-

(i) $\overline{F} \cdot d\overline{x}$ where $\overline{F} = (2x - y)\hat{i} - (yz^2)\hat{j} - (y^2z)\hat{k}$ and c is the boundary of the upper half of the sphere $x^2 + y^2 + z^2 = 4$

(ii) $\int \int (9x\hat{i} + 6y\hat{j} - 10z\hat{k}) \cdot d\bar{s}$ where s is

the surface of sphere with radius 2 units.

Con. 11456-14.

S.E. (Elex), Sem-III (Rev.)

03/06/2011

Circuit Theory.

QP Code: NP-18717

(3 Hours)

[Total Marks: 80

N. B.: (1) Question No. 1 is compulsory.

- (2) Attempt any three questions from remaining questions.
- (3) Use Smith chart wherever required.
- (4) Assume suitable data if required.
- (5) Attempt every question in a group and not randomly.
- 1. (a) Check for Hurwitz polynominal

$$Q(s) = s^5 + s^3 + s^1$$

 $Q(s) = s^4 + 6s^3 + 8s^2 + 10$

- (b) Obtain s-domain (Laplace Transform) equivalent circuit diagram of an inductor and capacitor with initial conditions.
- (c) Obtain Transmission parameters in terms of 'z' parameters.
- (d) List the types of damping in a series R-L-C circuit and mention the condition for each damping.
- 2. (a) Obtain pover supplied by dependent voltage source

10

10

20

(b) Compare and obtain Foster form I and form II using a example of RC ckt.

$$Z(s) = \frac{(s+1)(S+6)}{s(s+4)(s+8)}$$

Also give a example of L-C and R-L ckt.

[TURN OVER

Con. 13367-14.

3. (a) Obtain $i_1(o+)$, $i_2(o+)$ and $i_3(o+)$

(b) Design a short circuit stub match for $Z_L = 450 - 600 \text{ j}(\Omega)$ for a line of $Z_O = 300 (\Omega)$ and f = 20 MHz use Smith charts.

4. (a) Obtain hybrid parameters of the intercorrected 'Two' 2-port networks

8

(b) Check for p.r.f. test

6

$$F(s) = \frac{2s^2 + 2s + 1}{s^3 + 2s^2 + s + 2}$$

O

(c) Compare Cauer Form I and Cauer Form II of a LC Network.

6

$$Z(s) = \frac{2(s^2+1)(s^2+4)}{s(s^2+2)}$$

[TURN OVER

0 3 JUN 2014

Con. 13367-14.

(a) Obtain i(t) for t > 0

Where r(t) is a ramp signal.

(b) Derive an expression for characteristic equation of a transmission line. Also obtain α , β and γ of the line. 6

(c) Obtain V_x using some shifting and source transformation technique.

(a) Obtain Thevenin's equivalent circuit :-

Hence find current flowing through 10Ω load.

Con. 13367-14.

(b) Obtain $Z_{11}(s)$, $Z_{21}(s)$, $G_{21}(s)$ for the Laddar Network

(c) Explain various types of filters.

Con. 13367-14.

8

SE(ETRX) Sem III OLD 28.5.14

DCD

QP Code: NP-18678

(3 Hours)

[Total Marks: 80

10

N.B.: (1) Question No. 1 is compulsory.

- (2) Solve any three from remaining 5 questions.
- (3) Draw neat diagrams wherever necessary.
- 1. (A) Implement the following function using NOR gates only (after reduction using K map) $F = \pi M (1,2,4,7,11,13) \cdot d (9,15)$
 - (B) Design a MOD 6 asynchronous counter and explain glitch problem.
- 2. (A) Analyze the clocked synchronous machine given below. Write excitation equations, 10 excitation/transition table and state /output table (Use state names A D for Q1-Q2=00-11). Also draw the state diagram.

- (B) Design a 1 digit BCD adder using IC7483 and explain the operation for (0111) BCD + (1001) BCD 10
- 3. (A) Write a VHDL code for 8:1 Multiplexer with active low enable input.
 - (B) Design a mealy sequence detector to detect a sequence ----1101—using D flip-flops and logic gates.
- 4. (A) Design a circuit with optimum utilization of PLA to implement the following functions 10

F1 = \sum m (1, 2, 3, 6, 9, 11) F2 = \sum m (0, 1, 6, 8, 9)

 $F3 = \sum m (2, 3, 8, 9, 11)$

- (B) Implement following function using 4:1 line MUX and NAND gates. 10 F (A, B, C, D) = $\sum m (1, 2, 6, 7, 10, 12, 13)$
- (A) Design a 8 bit binary up counter using MSI counter IC 74163, draw a circuit diagram and explain working.
 - (B) Eliminate redundant states and draw reduced state diagram.

PS	NS		O/P
Q,	X = 0°	X = 1	Υ
A	В	C	1
. В	D	F.	. 1
C	F	E	0
D	В	G	1
E	F	C	0
F	E	D	0
G	F	G	0

- 6- Write short notes on (Any THREE):
 - 1. XC 4000 FPGA Architecture
 - 2. Stuck at '0' and stuck at '1' fault
- 3. Master Slave JK flip flop
- 4. 2 input TTL NAND gate

Con. 11974-14.

20

10